Assessing Prophylactic and Therapeutic Efficacy of a Cellulose Ether Compound TC-5RW on CJD

Zerui Wang, MD. Ph.D, Assistant Professor
Case Western Reserve University
Background

- **Cellulose ethers (CE)**
 Ingredients in foods and pharmaceuticals

- **Why TC-5RW?**
 Small molecular weight (easy to penetrate BBB)
 Long exiting time in tissue,
 Improve survival rate for prion disease in rodents

<table>
<thead>
<tr>
<th>Content (mol/AGU)</th>
<th>Viscosity (2%, 20°C, mPa·s)</th>
<th>Molecular weight (Mn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O-CH₃</td>
<td>O-CH₂CH(OH)CH₃</td>
<td></td>
</tr>
<tr>
<td>HPMC602</td>
<td>1.90</td>
<td>0.24</td>
</tr>
<tr>
<td>TC-5RW</td>
<td>1.91</td>
<td>0.24</td>
</tr>
<tr>
<td>60SH-50</td>
<td>1.88</td>
<td>0.24</td>
</tr>
<tr>
<td>60SH-400</td>
<td>1.92</td>
<td>0.24</td>
</tr>
<tr>
<td>60SH-4K</td>
<td>1.92</td>
<td>0.24</td>
</tr>
<tr>
<td>60SH-10K</td>
<td>1.92</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Teruya et al., 2018
Background

Neurodegenerative diseases: AD, PD, PrD, HD, ALS...
Misfolded proteins: α-syn, tau, Aβ, PrPSc, TDP43

Seeding amplification assay (SAA): RT-QuIC

Scheckel et al., 2015
Hypothesis

• TC-5RW could potentially serve as a prophylactic and therapeutic agent for human prion diseases.
• TC-5RW could also have a inhibitive effect on other misfolded proteins such as α-syn and tau

Aim

• Develop effective prevention and treatment of human prion diseases.
Inhibitive effect of TC-5RW on CJD in vitro

- TC-5RW is able to inhibit seeding activity of human PrPSc and to directly decrease PrPSc upon incubation of TC-5RW with brain homogenates of patients with different sporadic and genetic CJD *in vitro*
Protective effect of TC-5RW on PrPSc in vivo

1) Reduce PK-resistant PrPSc upon incubation with the compound in vitro
2) Can inhibit human PrPSc- aggregation seeding activity
3) A single subcutaneous administration of cellulose ethers had a remarkable protective effects on hamsters
Current study 1:

Determine the **prophylactic** and **therapeutic** effects of TC-5RW on **humanized transgenic (Tg) mice** expressing **human wild-type PrP** (Tg40h) before or after inoculation with human prions.
TC-5RW on humanized Tg40h mice before or after inoculation with human PrP^{Sc}

Survival Proportions

![Survival proportions graph](image)

<table>
<thead>
<tr>
<th>Survival Days</th>
<th>Control</th>
<th>Prophylactic Treatment at 24 DPI</th>
<th>Prophylactic Treatment at 151 DPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of Survival</td>
<td>Probability of Survival</td>
<td>Probability of Survival</td>
<td></td>
</tr>
<tr>
<td>Days</td>
<td>160</td>
<td>180</td>
<td>200</td>
</tr>
<tr>
<td>160</td>
<td>180</td>
<td>200</td>
<td>220</td>
</tr>
</tbody>
</table>

Statistical Analysis

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Prophylactic Treatment at 24 DPI</th>
<th>Prophylactic Treatment at 151 DPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of values</td>
<td>16</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Minimum</td>
<td>180</td>
<td>207</td>
<td>185</td>
</tr>
<tr>
<td>Maximum</td>
<td>215</td>
<td>227</td>
<td>217</td>
</tr>
<tr>
<td>Range</td>
<td>35</td>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>Mean</td>
<td>205.6</td>
<td>215.7</td>
<td>207.4</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>9.688</td>
<td>5.824</td>
<td>9.536</td>
</tr>
<tr>
<td>Std. Error of Mean</td>
<td>2.422</td>
<td>1.504</td>
<td>2.384</td>
</tr>
</tbody>
</table>

Graphical Representation

- Control
- Prophylactic Treatment at 24 DPI
- Prophylactic Treatment at 151 DPI

ns

✱✱

Current study 2:

- Determine the prophylactic and therapeutic effects of TC-5RW on a spontaneous prion mouse model (TgMHu2ME199K) that expresses human PrP carrying a mutation equivalent to human PrP-E200K linked to genetic CJDE200K.
TC-5RW has prophylactic and therapeutic effects on TgMHu2ME199K mice
Inhibitory effect of TC-5RW on alpha-synuclein seeding aggregation

CE Treated PD_SAA

Fluorescence Reading (1x10^14)

Time (h)

PD-SAA

ND-SAA

CE treated PD-SAA

(60h)

Fibril

Native protein

CE-0.03

CE-0.3

CE-3

CE-post treatment

CD (mdeg)

Wavelength (nm)

CE post-treated (60h)

Alpha-helix

Beta-sheet

Estimated Secondary Structure Content (%)
Inhibitory effect of TC-5RW on alpha-synuclein in vitro and in cell

![Graph showing ROS assay results](image)

![Graph showing toxicity results](image)
Inhibitory effect of CE on tau aggregation

1. CE can inhibit tau aggregation in vitro
2. CE can truncate tau protein into fragments with low MW

?Intracerebrally for further in vivo study
Summary of current findings

- Prion Disease Model: Inhibitive effect on in vitro aggregation, in cell (Abdulrahman et al., 2020), treatment effect in vivo (rodents) and show protective effect in prophylactic group.
- PD Model: Inhibitive effect on in vitro aggregation, in cell
- AD Model: Inhibitive effect on in vitro aggregation

TC-5RW, might function as a broad-spectrum inhibitor of protein aggregation. The implication of TC-5RW's potential to disaggregate a wide array of misfolded proteins suggests it could be a universal therapeutic strategy for various neurodegenerative diseases.
Plans

• Enhance the efficiency of the prophylactic approach through modification of injection routes.
Consider subcutaneous implantation or intracerebral injection.

• Explore the possible binding target of TC-5RW during the aggregation process, and identify potential small molecules that could synergistically boost the protective effect of CE.
Conclusions

• We found that one kind of cellulose ether called TC-5RW show therapeutic effect on prion disease of hamsters, in both prevention and post-treatment groups by single subcutaneous injection.
• We found that TC-5RW can inhibit the PrP^Sc aggregation of CJD and other associated misfolded protein in vitro.
• We are now testing the treatment effect of TC-5RW in humanized PrP mouse model and found that the extension of survival of prevention treatment group, but not as effective if given afterward by subcutaneous injection.
• We are exploring different injection routes of humanized PrP mouse model treatment, which might improve the treatment effect, and provide the possibility to develop efficient therapeutic compounds for CJD.