

# Development and characterization of the fastest animal model able to propagate GSS prions faithfully







*ciber* INFEC



Joaquín Castilla, PhD

15<sup>th</sup> July 2023

## **OBJECTIVES**

The development of therapies for any disease requires prior assessment of their safety and efficacy in animal models. To accurately evaluate the potential effectiveness of treatments, it is crucial to have animal models that faithfully reproduce the disease observed in humans

This project aims to develop and characterize new animal models that are directly susceptible to human prions, specifically those causing <u>Gerstmann-Sträussler-Scheinker disease</u>

## **GERSTMANN-STRÄUSSLER-SCHEINKER (GSS)**

Gerstmann-Sträussler-Scheinker (GSS) is an autosomal dominant hereditary disease, characterized by a slow progressive nature. It is also the first recognized human transmissible spongiform encephalopathy (TSE) associated with a mutation in the gene responsible for encoding the prion protein (PrP)

Among prion diseases, GSS is considered rare, with approximately 60 families reported worldwide. The age of onset can vary between 30 and 60 years old, and the duration of the disease can range from 3.5 to 9.5 years

The clinical manifestation primarily includes cerebellar ataxia, pyramidal signs, and dementia. However, it's important to note that GSS is characterized by both genotypic and phenotypic heterogeneity, indicating variability in its genetic makeup and resulting clinical features

Several mutations on *PRNP* gene are involved: P102L, P105L, A117V, Y145STOP, F198S, D202N, Q217R, Y218N and also octa repeats (OR) insertions (8 OPRI, 6OPRI...)

For decades, it was considered a non-infectious and non-transmissible prion disease



## **ANIMAL DISEASE MODELS**

What are the desired characteristics of a disease model?



It should exhibit pathological hallmarks of the neurodegenerative disease

It should display clinical signs that resemble the symptoms observed in humans with the neurodegenerative disease

It should exhibit a progressive course of the disease, mirroring the temporal progression of pathology

It should help to evaluate the efficacy of potential therapies and study underlying mechanisms of action

It should be easily accessible, reproducible, and manageable in terms of breeding, housing, and experimental procedures

Models that possess these critical characteristics can serve as valuable tools for understanding disease mechanisms, testing potential therapies, and advancing our knowledge of neurodegenerative disorders

## **SIX (6) DIFFERENT STUDIES**

- ✓ Comparative study of different animal models
- ✓ Specific infectivity
- ✓ Study to assess the impact of PrP quantity
- ✓ Kinetics for the study of biomarkers
- ✓ Kinetics to understand the temporal progression of the disease
- ✓ Assessing the utility of this model for evaluating antiprion therapies

## **GSS SAMPLES**



## P102L

## A117V



Wild-type mouse (1x)

## **ANIMAL MODELS**



Tg mouse expressing human PrP (6-8x)



Tg mouse expressing bank vole PrP (~1x) Tg mouse expressing mouse PrP (~3x)



Tg mouse expressing bank vole PrP (~4x)

## **COMPARATIVE STUDY OF DIFFERENT ANIMAL MODELS**

#### **Intracerebral inoculations**



## **COMPARATIVE STUDY OF DIFFERENT ANIMAL MODELS**

#### Intraperitoneal inoculations



## **COMPARATIVE STUDY OF DIFFERENT ANIMAL MODELS**

Serial passages (intracerebral inoculacions)





The deposition of PrP<sup>res</sup> is of a fine punctate /granular type, preferably in the white matter

The lesion is centered in the hippocampus, striatum (basal nuclei), and occipital cortex. There is some involvement in the frontal, parietal, and temporal cortex, as well as the cerebellum.

## **REPRODUCIBILITY OF THE DISEASE**

**Biochemical studies** 



## **SPECIFIC INFECTIVITY**

**Intracerebral inoculation** 



## **SPECIFIC INFECTIVITY**

**Intracerebral inoculation** 



## **STUDY TO ASSESS THE IMPACT OF PrP QUANTITY**

**Intracerebral inoculations** 





RESEARCH ARTICLE

## Antisense oligonucleotides extend survival of prion-infected mice

Gregory J. Raymond,<sup>1</sup> Hien Tran Zhao,<sup>2</sup> Brent Race,<sup>1</sup> Lynne D. Raymond,<sup>1</sup> Katie Williams,<sup>1</sup> Eric E. Swayze,<sup>2</sup> Samantha Graffam,<sup>3</sup> Jason Le,<sup>3</sup> Tyler Caron,<sup>3</sup> Jacquelyn Stathopoulos,<sup>3</sup> Rhonda O'Keefe,<sup>3</sup> Lori L. Lubke,<sup>1</sup> Andrew G. Reidenbach,<sup>3</sup> Allison Kraus,<sup>1</sup> Stuart L. Schreiber,<sup>3</sup> Curt Mazur,<sup>2</sup> Deborah E. Cabin,<sup>4</sup> Jeffrey B. Carroll,<sup>5</sup> Eric Vallabh Minikel,<sup>1,3,6,7</sup> Holly Kordasiewicz,<sup>2</sup> Byron Caughey,<sup>1</sup> and Sonia M. Vallabh<sup>1,3,6,7</sup>

#### Engineered Zinc Finger Transcriptional Regulators Specifically Reduce Prion Expression and Extend Survival in an Aggressive Prion Disease Model

Bryan Zeitler<sup>1</sup>, Meredith A Mortberg<sup>2</sup>, Shih-Wei Chou<sup>1</sup>, Mohad Mehrabian<sup>1</sup>, Kimberly Marlen<sup>1</sup>, Michael Howard<sup>2</sup>, Samantha Graffam<sup>2</sup>, Kenney Lenz<sup>2</sup>, Tyler Caron<sup>2</sup>, Qi Yu<sup>1</sup>, Jing Hu<sup>1</sup>, Sarah Hinkley<sup>1</sup>, Alicia Goodwin<sup>1</sup>, Asa Hatami<sup>1</sup>, Alaric Falcon<sup>1</sup>, Toufan Parman<sup>1</sup>, Jason Fontenot<sup>1</sup>, Amy M Pooler<sup>1</sup>, Eric Vallabh Minikel<sup>2</sup>, Sonia M Vallabh<sup>2</sup>

<sup>1</sup> Sangamo Therapeutics, Inc., Richmond, CA
<sup>2</sup> Broad Institute of MIT and Harvard, Cambridge, MA

Abstract #490

Sangame

## **KINETICS FOR THE STUDY OF BIOMARKERS**

**Blood-based biomarker** 

Neurofilament light chain (NfL) on the neuron



## **KINETICS FOR THE STUDY OF BIOMARKERS**

**Blood-based biomarker** 







## **KINETICS FOR THE STUDY OF BIOMARKERS**

**Blood-based biomarker** 



## KINETICS TO UNDERSTAND THE TEMPORAL PROGRESSION OF THE DISEASE

Intraperitoneal inoculation



Interaural 1.74 mm

Incentional 1.50 million

bilateral spongiform lesion bilateral in sharhitipecasponsiaffectingsible, abcated orienthe hippocampus, slighted tingsserie atenti the stratum 1.2 diatum of hippocampal CA1 horn."

Bregmo -2.80 mm

Bregma -2.06 mm

## KINETICS TO UNDERSTAND THE TEMPORAL PROGRESSION OF THE DISEASE

Intraperitoneal inoculation



Widely hybothetical hilateral spongiform lesion throughout the brance appairance of the brain tissue would be best achieved through intraventricular administration into striction intraventricular administration into striction rostrodorsal aspect of the hipble and rostrodorsal aspect of the rostrodorsal aspect of the hipble and rostrodorsal aspect of the rostrodo

#### ASSESING THE UTILITY OF THIS MODEL FOR EVALUATING ANTIPRION THERAPIES

Intraperitoneal inoculation



## **SUMMARY / CONCLUSIONS**

The development of therapies for any disease requires prior assessment of their safety and efficacy in animal models. To accurately evaluate the potential effectiveness of treatments, it is crucial to have animal models that faithfully reproduce the disease observed in humans

We have developed and characterized new animal models that are directly susceptible to human prions, specifically those causing Gerstmann-Sträussler-Scheinker disease

- > We have developed the fastest animal model to date for a human prion disease, capable of propagating prions in less than 40 days.
- > By evaluating different inoculation routes, we have made this animal model suitable for testing treatments.
- We have thoroughly examined the brain lesions that develop in these animals. This study has provided valuable insights into the temporal progression of the disease to focus treatment where most needed.
- We have analyzed the arousal of a biomarker in blood, the levels of which increase weeks before the onset of neurological clinical signs.
- Additionally, our research has effectively demonstrated the utility of this animal model in assessing the efficacy of two potential treatments. One treatment aims to reduce PrP<sup>c</sup> levels, while the other utilizes a molecule with anti-prion activity.

## ACKNOWLEDGMENTS



The "Mercies in Disguise Research Grant, in Honor of the Baxley Family", contributed by Kathy Baxley and Family

The José A. Piriz and Sonia E. Piriz Memorial Research Grant, contributed by Karla and Lauren Piriz

**The Thomas Lord Charitable Trust** 

The Strides for CJD Grant and CJD Foundation Grant, contributed by the Families of the CJD Foundation

## Acknowledgments

Hasier Eraña Jorge Moreno **Cristina Sampedro** Carlos Díaz Nuno Anjo

Maitena San Juan Josu Galarza Eva Fernández Patricia Piñeiro Mirta García





#### Former lab members:

Natalia Fernández Saioa Elezgarai **Chafik Harrathi** Maite Pérez

#### **Collaborators:**



Mariví Geijo



CIMUS

Nuria López

**PND** 

research

Centro Singular de Investigación en Medicina Molecular e

Enfermidades Crónicas

Jesús R. Requena

**Glenn C. Telling** 

Vanessa Venegas

Nagore Sacristán

**Ezequiel González** 

Miguel Ángel Pérez

Steffen Halbgebauer



MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG

Markus Otto



#### **Funding:**











Sandra García

Rafael López

**Tomás Barrio** 

universität UUIM



# Thanks!

## **Gracias!**

# Eskerrik asko!

